网上有关“任意多边形的外角和都等于360度?”话题很是火热,小编也是针对任意多边形的外角和都等于360度?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
求证:n边形的外角和等于360度
解:n变形外角和=180°-角1+180°-角2+180°-角3……+180°-角n
=180°n-(n变形内角和)
=180°n-180°*(n-2)
=180°n-180°n+2*180°
=360°
答:n边形的外角和等于360度。
怎样证明任意多边形外角和等于360°
n边形的内角与外角的总和为n×180°,n边形的内角和为(n-2)×180°,那么n边形的外角和为360°。这就是说多边形的外角和和边数无关。
解答有关多边形内角和外角和的问题时,通常利用公式列方程来解答问题。并且,三角形的一个外角等于不相邻的两个内角之和。
n边形内角之和为(n-2)*180,设n边形的内角为∠1、∠2、∠3、...、∠n,对应的外角度数为:180-∠1、180°-∠2、180°- 180°-∠n,外角之和为:
(180-∠1)+(180°-∠2)+(180°-∠3)+...+(180°-∠n)
=n*180°-(∠1+∠2+∠3+...+∠n)
=n*180°-(n-2)*180°
=360°
扩展资料
任意凸多边形的外角和都为360°。多边形所有外角的和叫做多边形的外角和。
80n是所有外角和内角的和,180°(n-2)是所有内角和,减去就是外角和。
∵n边形外角等于(180°-和它相邻的内角).
∴180°n-180°(n-2)=180°n-180°n+360°=360°
由上式可知任意凸多边形的外角和等于360度。
证明:
n边形内角之和为(n-2)*180,设n边形的内角为∠1、∠2、∠3、...、∠n,对应的外角度数为:180-∠1、180°-∠2、180°-∠3、...、180°-∠n,外角之和为:
(180-∠1)+(180°-∠2)+(180°-∠3)+...+(180°-∠n)
=n*180°-(∠1+∠2+∠3+...+∠n)
=n*180°-(n-2)*180°
=360°
扩展资料:
多边形内角和定理证明
证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形.
因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°
所以n边形的内角和是n·180°-2×180°=(n-2)·180°.(n为边数)
即n边形的内角和等于(n-2)×180°.(n为边数)
证法二:连结多边形的任一顶点A1与其不相邻的各个顶点的线段,把n边形分成(n-2)个三角形.
因为这(n-2)个三角形的内角和都等于(n-2)·180°(n为边数)
所以n边形的内角和是(n-2)×180°
参考资料:
百度百科-多边形的外角和关于“任意多边形的外角和都等于360度?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[裁云锦]投稿,不代表拾光号立场,如若转载,请注明出处:https://www.7k54.com/shiga/8891.html
评论列表(3条)
我是拾光号的签约作者“裁云锦”
本文概览:网上有关“任意多边形的外角和都等于360度?”话题很是火热,小编也是针对任意多边形的外角和都等于360度?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,...
文章不错《任意多边形的外角和都等于360度?》内容很有帮助